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Abstract

Many disciplines of sciences are concerned with the task of understanding the causal data gener-
ating mechanism and making prediction or inference when naturally occurring mechanisms are
subjected to external interventions. Causal structure learning concerns with developing a structural
representation of underlying causal interactions and inferring the causal relations from observa-
tional data, optionally using domain knowledge or experimental data. The conventional causal
Bayesian network and the structure learning algorithms built on top of it assume the independence
and identical distribution (IID) of observations. However, real-world data have intrinsic semantic,
temporal, and causal couplings as well as heterogeneity in the distribution. These real-world data
complexities may lead to unreliable or misleading conclusions when applying the models with the
IID assumption. We explore the existing work on causal structure learning from non-IID data. First,
we introduce the relational model that captures the entities, relationships, and attributes with their
causal dependencies. Also, the relational causal discovery (RCD) algorithm for learning the causal
relationship between the attributes in the model is discussed. Next, we will present causal structure
learning for heterogeneous or non-stationary environments where the data collection conditions
vary or data distribution changes over time. Lastly, we investigate the causal structure learning in
the multivariate time series settings where a variable is auto-correlated and influenced by past or
contemporary values of other variables.
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1. Introduction

1.1 Causal Structure Learning
Recently the performance of data science and artificial intelligence systems have improved in several
tasks such as classification, regression, object detection, language understanding, and strategic
game playing. The success of these systems is mainly due to the availability of large annotated
datasets, the emergence of powerful non-linear discriminative models, speed-up gains obtained
with hardware acceleration, and flexibility of software frameworks. However, many disciplines
of sciences are concerned with the task of understanding the causal data generating mechanism
and making prediction or inference when naturally occurring mechanisms are subjected to external
interventions. The past three decades have seen a number of conceptual developments and some
partial solutions toward the task of learning the underlying causal data generating mechanism
(Spirtes, 2010). Still, the practical application of these developments is limited by additional
challenges such as domain-specific mechanisms, unavailability of ground truth, the presence of
unmeasured causes, a large number of variables, and heterogeneity and bias present in big data.
A traditional approach for determining the cause-effect relationship is a randomized experiment
where the value of a treatment variable is manipulated randomizing over other variables to record
the average effect in the outcome variable. A well-known example is a medical drug trial, where
the decision of giving a drug or placebo to the participants is determined by random for testing the
effectiveness of the drug. However, it is often infeasible to conduct such experiments due to the
limited resources (time and cost), ethical issues, and a large number of variables. Therefore, the
task of inferring the causal relations from observational data, optionally using domain knowledge or
experimental data, is known as Causal Discovery. The casual relations are effectively represented
with a directed acyclic graph (DAG) G(V,E) where each vertex denotes a random variable and a
directed edge A→ B denotes A is the direct cause of B. A causal discovery problem can be framed as
a problem of learning a N ×N adjacency matrix where (i, j)th element signifies whether ith variable
is the direct cause of jth variable, and N is the number of variables. Thus causal discovery is
interchangeably termed as Causal Structure Learning (CSL) or Causal Structure Discovery (CSD).

1.2 Real-world Data Complexities
Most of the learning problems in statistics and machine learning assume that features or random
variables are independent and identically distributed (IID or i.i.d.). The independence assumption
considers the samples are not dependent on one another. Similarly, the identical distribution
assumption posits the underlying distribution of each random variable or feature is the same for
all samples. The IID assumption is used in most of the statistical learning algorithms, including
algorithms for causal structure learning (Glymour et al., 2019), for the theoretical guarantee of
correctness and completeness. Moreover, the IID assumption is the foundation of model selection
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techniques such as cross-validation and bootstrapping in statistics and machine learning. However,
the IID assumption is rarely satisfied in real-world scenarios. There are natural coupling mechanisms
where an observation is linked to other observations. Similarly, the distribution of data may change
with time as well as domain. Some examples of couplings (Cao, 2014) found in data are:

• Serial or Temporal Coupling: The observations are related by order of occurrence (in time)
where one event takes place only after another event. For example, a retweet can be done only
after a tweet is posted.

• Semantic and Syntactic coupling: The observations have semantic and/or syntactic rela-
tionship. For example, comments in a Facebook post are related to the post by design.

• Causal coupling: The observations have a cause-effect relationship. For example, a piece of
breaking news may cause a trend of related tweets.

Although the coupling examples presented above are in the context of social network data, these
coupling mechanisms can be found in data sources from other domains as well. In addition to the
coupling between the data samples, there may also be a distribution shift of the features or random
variables. The data may follow a seasonal trend (for example, clothes sales data). Also, the data
collection conditions and experimental settings may be different across domains and datasets. The
data where the independence and identically distributed assumption does not hold is known as
non-IID data. The complex couplings and heterogeneity in data distribution may lead to unreliable
or misleading conclusions when traditional structure learning algorithms with IID assumptions are
applied to non-IID data.

1.3 Research Motivation
The problem of maximally learning the causal structure from data is both NP-hard (Chickering
et al., 1994) and NP-complete (Chickering, 1996). However, the adjacency in real-world causal
graphs is generally assumed to be sparse. Also, background domain knowledge is available in some
cases that can be incorporated into the learning problem. The past three decades of research have
produced theoretical foundations, conceptual developments, and computational methods for causal
structure learning (Spirtes et al., 2000; Pearl, 2009). Several compelling real-world applications
(Borboudakis and Tsamardinos, 2016; Oktay et al., 2010; Lagani et al., 2016) of causal structure
learning in the field of social sciences, natural sciences, and engineering have emerged. On the other
hand, several data complexities such as non-IIDness, selection bias, missing data, and noisy data
create challenges for learning reliable and robust causal structures from observational data. Thus,
the area of causal structure learning has both challenges and opportunities that require non-trivial
solutions.

1.4 Overview and Organization
In this work, I examine causal structure learning from non-IID data specifically relational (Maier
et al., 2013a), non-stationary/heterogeneous (Zhang et al., 2017), and time-series (Malinsky and
Spirtes, 2018) data. I gather the evidence from the sources to show conventional approaches with
IID assumption produce inconsistent results when applied to non-IID data. Also, most importantly,
the sources reveal the non-IID nature of data provides additional knowledge for learning causal
structure.

I present background on conceptual developments and assumptions for causal structure learning
from observational data in Chapter 2. I briefly discuss the representation of causal structure with
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a causal Bayesian network and structural equation model (SEM), conditional independence tests,
common assumptions for learning causal structure from data, and classification of causal structure
learning algorithms. Chapter 3 reviews an approach to causal structure learning from relational
data with an entity-relationship-attribute schema. Chapter 4 summarizes the representation of non-
stationary or heterogeneous data for CSL as well as the proposed algorithms to learn the adjacency
(skeleton) graph and orientation of edges. Chapter 5 reports the CSL methods for multivariate time
series data as well as the representation of unmeasured common causes and contemporaneous causal
relationships in time series data. Moreover, a critique highlighting the strengths and limitations of
each CSL approach is presented after the summarization in Chapters 3 to 5. Finally, I discuss the
collective contributions of each paper toward learning causal structure from non-IID data. Moreover,
I consider the limitations and challenges in learning causal structure from non-IID data and develop
further research direction and potential ideas for practical applications in the real world.
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2. Background

2.1 Notations and Terminologies
This section provides standard notation used throughout the paper unless otherwise specified as well
as defines common terminologies with alternatives. The symbols with boldface signify sets. The
random variables are denoted by uppercase letters and indexed with a subscript. For example, X is
a random variable, Vi is a random variable from a set V and X,t and Vi,t are time-indexed random
variables. The instances of random variables are represented by lower case letters and follow similar
indexing. G(V,E) is a graph with a set of vertices V and edges E. A→ B denotes an edge E from
A to B in a graph G. The node A is the parent of the node B. The symbol pa(Vi) indicates a set of
nodes that are parents of node Vi. Similarly, B is a child of A. A directed path is a sequence of nodes
obtained following the direction of the edges. The nodes preceding the tail node of the directed path
are the ancestors of the tail node. Similarly, the nodes following the head node of the directed path
are descendants of the head node. The symbols anc(Vi) and des(Vi) indicate the sets of ancestors
and descendants of Vi respectively. A directed graph with no paths starting and ending on the same
node is known as a directed acyclic graph (DAG).

The Table 2.1 below summarizes common terminologies with their alternatives and description.
The terminology and its alternatives are used interchangeably.

Table 2.1: Common terminologies and their alternatives used interchangeably within this paper

Terminology Alternatives Description
Causal Structure
Learning

Causal Discovery, Causal Struc-
ture Discovery

The problem of learning causal relationships using observational data and
optionally domain knowledge or experimental data

Causal Graph
Causal Bayesian Network,
Causal DAG, Causal Graphical
Model, Graphical Model

A graph that represents random variables and captures causal relationships
as well as conditional independence

Vertex Node A vertex V of a Graph G(V,E)
Latent Confounder Hidden Confounder, Unmea-

sured Confounder Hidden common cause of two or more variables

Structural Equation
Model Functional Causal Model A model that defines a variable as a function of its direct causes and error

term

2.2 Structural Causal Models
A structural causal model (SCM) (Pearl et al., 2016) is used to model the causal assumptions by
representing the relevant features and their interaction. An SCM models how nature assigns values
to the features of interest using a set of variables U,V, and a set of functions f that assign values
to each variable in V using other variables. The variables U termed as exogenous variables are
external to the causal model and often considered errors or disturbances. The causal relations of
the endogenous variables V are explained by the functions of at least one exogenous variable and
optionally other endogenous variables. The SCMs are either represented by Structural Equation
Models (SEM) or Causal Graphical Models.



CHAPTER 2. BACKGROUND 5

Structural Equation Model The causal effect on a variable can be explained by a function of
its known direct causes and unknown disturbances i.e.

Vc = fc(V(c)
,U(c)) (2.1)

, where V(c)
⊂V is a set of direct causes of variable of interest Vc and U(c)

⊂U is a set of unmeasured
disturbances. The function fc can be any linear or non-linear function. The function fc can also be
unknown for a non-parametric model.

Causal Graphical Model The causal relationship among the random variables can also be
represented using a DAG where a variable has incoming edges from its direct causes and unmeasured
disturbances. Unless otherwise specified, the unmeasured disturbances of each variable are assumed
to be independent with other disturbances and not shown explicitly in the graph. For the SEM
presented in Equation 2.1, Vc has edges from V(c) and U(c) (implicitly). The DAG is, in fact, a causal
Bayesian Network with nodes representing the random variables and edges representing causal
direction. In addition to the intuitive representation of causality, causal Bayesian Networks capture
the joint probability of all the random variables in the network. The joint probability of Bayesian
Network factorizes to the product of the conditional probability of each random variable given its
parents. Formally,

P(V1,V2, ....,Vn) =
n

∏
i=1

P(Vi∣pa(Vi)) (2.2)

This factorization saves huge space needed for the joint probability table which can be replaced
by much smaller conditional probability tables (CPT) for each variable. Moreover, the Bayesian
Network captures independence relationship between random variables which is discussed in next
section.

2.3 Conditional Independence

2.3.1 Local Markov Condition
The factorization in equation 2.2 follows from the chain rule of probability theory and conditional
independence (CI) relations. Both the structural equation and graphical models are constructed
such that a random variable is the function of its direct causes and disturbances. Thus, a random
variable is independent of all other variables expect its parents and its descendants. The influence of
a random variable can flow to its child and then to the descendants. However, given the parents, the
ancestor variables are independent of a random variable. This conditional independence property is
formally known as Local Markov Conditions as defined in equation 2.3.

Vi ⫫ V\ {Vi, pa(Vi),des(Vi)}∣pa(Vi) (2.3)

These conditions are, however, not all the conditional independence relationships captured by the
model. The next section describes the rules for dependency separation (d-separation) that capture
all the conditional independencies encoded in a graphical model.
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Figure 2.1: Three typical sub-graphs of a DAG capturing conditional independence

2.3.2 d-separation
Two random variables are likely dependent if there is an edge between those variables. This implies
those random variables may also be independent under some data distribution. The dependency
separation (d-separation) finds all the conditional independencies that hold for any data distribution
that is generated by the mechanism described by a graphical model. The conditional independence
relationships for the following three graphical structures help to formally define the rules of d-
separation.

Chain Figure 2.1(a) shows a chain structure that is a subgraph of a DAG with a unidirectional
path. The random variables X and Y are independent conditioned on Z i.e. X ⫫ Y ∣ Z.

Fork The fork structure is shown in Figure 2.1(b) where random variable Z is a common cause of
variables X and Y . The variables X and Y are independent when Z is observed i.e. X ⫫ Y ∣Z.

Collider Figure 2.1(c) depicts a collider structure where variable X and Y have common effect
on variable Z. The independence relation for a collider is a bit different compared to chains and
forks. X and Y are marginally independent when Z is not observed. However, when either Z or its
descendants are observed, X and Y are likely dependent.

An undirected path is said to be blocked by a node Z with a conditioning set S of observed
variables if one of the two conditions hold: (i) Z ∈ S and Z is not a collider or (ii) Z is a collider and
neither Z nor its descendants belong to conditioning set S. Two nodes are said to be d-separated
by a conditioning set S if and only if all the paths between the nodes are blocked by S (Guo et al.,
2018). The d-separated nodes are independent of one another conditioned on set S. Given a causal
DAG, all the conditional independencies encoded by the model are given by the d-separation rule.
These sets of conditional independencies can be compared against the independencies in the data
for accessing the fitness of the model.

2.3.3 Markov Equivalence Class
A single conditional independence relation can be satisfied by multiple causal graphical models.
Figure 2.2 demonstrates three causal graphs that satisfy the independence relationship A ⫫C ∣ B.
These DAGs satisfying the same set of conditional independencies are referred to as an equivalence
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Figure 2.2: Equivalence class of DAG satisfying A⫫C ∣ B

class or Markov equivalence class. Thus, conditional independencies from data enable us to learn
the equivalence class of a DAG.

2.3.4 Statistical Independence Tests
The translation of conditional independence to the structure of graphical models makes statistical
independence tests the backbone for learning causal relationships. Typically statistical independence
tests answer, with a p-value, whether two random variables are independent conditioned on a possibly
empty set S using the observations. The null hypothesis of the statistical test is the variables are
independent conditioned on S. The choice of statistical tests depends on the nature of random
variables such as continuous, discrete or mixed data distribution, linear/non-linear SEM assumption,
computational complexity, data dimensionality, and so on (Strobl et al., 2019).

2.4 Causal Structure Learning Problem
In addition to causal relationships, an SCM can quantify the actual causal effects on a random
variable with the conditional probability tables (CPT) in graphical models or the function parameters
in SEM. The task of causal structure learning, however, centers on only learning the skeleton graph
and the orientation of the edges. In other words, a causal structure learning concerns with learning a
non-parametric model. However, learning causal structure from the data is possible only with some
assumptions about the data.

2.4.1 Faithfulness Assumption
The skeleton estimation step concerns with determining whether the random variables are connected
by an edge. If there is an edge between two variables in a graphical model, we can say these
variables are likely dependent. However, their dependence cannot be guaranteed as there may
exist some data distribution where these variables are independent. Hence, an assumption called
the faithfulness assumption has to be made to construct the skeleton graph from the data. The
faithfulness assumption presumes all the conditional independencies observed from the data are
entailed by the d-separation conditions of a causal graph.
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2.4.2 Causal Sufficiency Assumption
The exogenous variables U of an SCM are associated with each endogenous variables V. The
exogenous variables are not explicitly included in causal graphs as all the variables in U are assumed
to be independent of one another. In other words, it is assumed that there are no unmeasured
common causes of variables in V. This assumption is known as the causal sufficiency assumption.

2.4.3 Problem Definition
With the faithfulness and causal sufficiency assumption, we can say Vi and Vj in a DAG G(V,E)
are adjacent if and only if Vi and Vj are dependent conditional on every subset of V\ {Vi,Vj}. The
causal sufficiency can be a strong assumption as the chances of having one or more unmeasured
confounders are relatively high in many domains. Some causal structure learning methods (Spirtes
et al., 2000, p. 123) can handle the unmeasured confounders by introducing a bidirectional edge.
The general problem formulation for learning a causal DAG under faithfulness and causal sufficiency
assumption is simply learning a N ×N adjacency matrix where N(i, j) = 1, if Vi is the direct cause
of Vj, and N = ∣V∣. The formulation above can be expanded to the structures with unmeasured
confounders by allowing the matrix element to have multiple values reflecting if an edge is due to
direct cause or confounding effect (Glymour et al., 2019).

2.5 Causal Structure Learning Algorithms
Several causal structure learning algorithms have been developed in the past few decades. These
algorithms can be summarized by categorizing them according to their approach.

2.5.1 Constraint Based
The first class of algorithms called Constraint-Based algorithms use the statistical tests to check
the independencies in the data and estimate the skeleton and orientation of the causal structure
using these independencies as constraints. These algorithms generally start with a complete undi-
rected graph and construct a skeleton adjacency graph and then orient the edges using conditional
independencies and faithfulness assumption. These algorithms have flexibility to include domain
knowledge as constraints as well. Peter-Clark (PC) and Fast Causal Inference (FCI) (Spirtes et al.,
2000) are commonly used constraint based algorithms.

2.5.2 Score Based
Score based algorithms consider the causal discovery problem as fitting a causal graph to the
data. A relevant score function is defined that relates how well the graph captures the conditional
independencies in the data. These algorithms relax the faithfulness assumption but the causal
sufficiency assumption is made. Greedy Equivalence Search (GES) (Chickering, 2002) is a popular
score based causal structure learning algorithm that starts with an empty graph and keeps adding
the edges that increase the goodness of fit score. The algorithm then removes the edges to return the
equivalence class of DAGs with maximum score.
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2.5.3 Hybrid
This class of algorithms combines both constraint-based and score-based approaches to utilize the
conditional independencies tests as well as scoring functions. GFCI (Ogarrio et al., 2016), a hybrid
algorithm, uses GES like scoring for skeleton determination and FCI for pruning the skeleton and
orienting the edges.

2.5.4 Functional Causal Model Based
These approaches use non-linear SEM and are typically used to determine the direction of edges in
case of two variables (Glymour et al., 2019). The general principle is that the regression in causal
direction makes error terms independent with direct causes. However, regressing in anti-causal
direction makes error terms correlated.
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3. Causal Structure Learning from Relational Data

Causal Bayesian networks provide an intuitive representation of causal relationships and encode
the conditional independencies between random variables. Moreover, Bayesian networks can
compactly represent the joint probability distribution over the set of variables as conditional
probability tables due to the factorization property of equation 2.2. However, the Bayesian networks
assume the data instances are independent and identically distributed (IID). The real-world data-
generating mechanisms mostly involve various heterogeneous entities with complex relationships.
The Bayesian network is not rich enough to encode the relational data involving diverse entities
and their relationships. For example, social network data consists of individuals, contents and
their interactions. All the random variables in a Bayesian network are implicitly assumed to
belong to a single entity or unit. The research in the probabilistic graphical models has developed
more expressive representations such as probabilistic relational model (PRM) (Getoor et al., 2007)
which removes the assumption of IID instances. The development of theory on representation and
conditional independencies in the relational models (Maier et al., 2013b) has enabled constraint-
based causal structure learning from relational data (Maier et al., 2013a). In this chapter, I summarize
the work by Maier et al. (2013a) on the representation of relational models and the approach for
constraint-based causal discovery using relational d-separation.

3.1 Representation

3.1.1 Relational Model

Figure 3.1: Example Relational Model for Movie Industry Domain

Relational models are designed to capture the real-world entities, their attributes as well as
relationships with other entities. Let us take a running example by Maier et al. (2013a) that considers
the movie industry domain with two entities ACTOR and MOVIE. Figure 3.1 depicts the relational
model for the example domain. Each entity has one or more attributes and the entities are connected
by a relationship with cardinality constraint. In the example above, "Popularity" and "Success" are
the only attributes for the entities ACTOR and MOVIE respectively. The two entities are connected
by a relationship "STARS-IN" with many-to-many cardinality. This means an actor can star in
one or more movies and a movie can cast many actors. Moreover, the the directed edge from
ACTOR.Popularity to MOVIE.Success signify the underlying causal mechanism where an actor’s
popularity causes success of the movie she starts in.
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Figure 3.2: Relational skeleton showing instantiation of the example Relational Model

Relational Schema: The first component of a relational model is a relational schema S =

{E,R,A} that describes the entities, relationship, and attribute classes as well as contains the
cardinality constraints. It is typically represented as an entity-relationship (ER ) diagram similar to
figure 3.1 except for the causal edges.

Relational Skeleton: A relational skeleton σ is an instantiation of the relational schema. The
instances of entities interact according to relationship and cardinality constraints. Figure 3.2 shows
the relational skeleton for the example model.

Relational Path: A relational path is an alternating sequence of entities and relationship
classes according to the schema subjected to cardinality constraints. Some relational paths
for the model in figure 3.1 are [ACTOR], [ACTOR,STARS − IN,MOV IE], [ACTOR,STARS −
IN,MOV IE,STARS − IN,ACTOR] signifying a single actor, an actor starring in a movie, and
co-actors of a movie respectively

Relational Variables: A relational variable is defined by a pair of a relational path and an at-
tribute of the class ending on the relational path. For example: [ACTOR].Popularity, [ACTOR,STARS−
IN,MOV IE].Success, [MOV IE,STARS− IN,ACTOR].Popularity and so on are the relational vari-
ables.

Relational Dependency: A relational dependency is a pair of relational variables with a com-
mon first item termed as perspective. For example, the pair of relational variables [MOV IE,STARS−
IN,ACTOR].Popularity→ [MOV IE].Success suggests the success of a movie is dependent on the
popularity of actors starred in the movie. A dependency is said to be a canonical dependency if the
effect variable has only one entity in the relational path.

Relational Model: Formally a relational model M = (S,D) is a collection of relational depen-
dencies D in a canonical form defined over a schema S. Like Bayesian networks, relational models
are parameterized by a set of conditional probability distribution one for each relational variable
A(I), where I ∈ E ∪R.

Ground Graph: A ground graph GGMσ is a model instantiation produced when the relational
model M is paired to the relational skeleton σ . The ground graph is a directed graph with a node
for all the attributes of each instance and an edge between the instances of relational variables
participating in relational dependencies. Figure 3.3 depicts a ground graph for the example relational
model and skeleton presented in Figures 3.1 and 3.2 respectively. The ground graph follows similar
factorization as in Bayesian networks and given by Equation 3.1

P(GGMσ ) = ∏
I∈{E,R}

∏
X∈A(I)

∏
i∈σ (I)

P(i.X ∣pa(i.X )) (3.1)
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Figure 3.3: A ground graph for the example relational model and skeleton presented in Figures 3.1
and 3.2 respectively

Figure 3.4: An abstract ground graph from (a) ACTOR perspective and (b) MOVIE perspective for
the example relational model and ground graph presented in Figures 3.1 and 3.3 respectively

3.1.2 Abstract Ground Graphs
The d-separation property of Bayesian networks does not work accurately when applied directly to
relational models (Maier et al., 2013a). The ground graphs are dependent on all the instances of a
relational model which may lead to a large number of nodes. Maier et al. (2013b) developed an
abstract representation of ground graphs and showed the soundness and completeness of using d-
separation to reason about conditional independencies encoded in those representations. An abstract
ground graph AGGMBh is a directed graph defined for a relational model M with perspective B
and a scalar hop threshold h that captures the dependency among relational variables for any
possible ground graph. The number of nodes in an AGGMBh depends on the number of relational
variables starting with perspective B and having a maximum of h path length. An edge is present
between the relational variables in an abstract ground graph if there exists any ground graph with
relational dependency between those variables. Figure 3.4 shows the abstract ground graphs from
the perspective of ACTOR and MOVIE with a hop limit of 4. As seen from the figure, a single
relational model can have multiple abstract ground graphs for different perspectives. Also, a single
dependency in a relational model can be translated to multiple edges in an abstract ground graph.

3.2 Methodology
Maier et al. (2013a) proposed Relational Causal Discovery (RCD) algorithm for learning causal
structure from relational data using abstract ground graphs (AGG) representation. RCD is a
constraint-based algorithm that reasons about the conditional independencies in AGG using rules
of relational d-separation. Similar to other constraint-based algorithms, RCD involves two phases:
(i) skeleton estimation and (ii) edges orientation determination. Under causal faithfulness and
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sufficiency assumption, the RCD is algorithm is shown to be sound and complete. Soundness and
completeness of the algorithm provide a theoretical guarantee under the satisfaction of the assump-
tions and correct conditional independencies test, no other algorithm can find more orientations
from the observational data. The pseudocode for RCD algorithm is outlined in Algorithm 1 and
described in the following sections.

Algorithm 1: Relational Causal Discovery (RCD) Algorithm (Maier et al., 2013a)

3.2.1 Skeleton Estimation
The skeleton estimation for the RCD algorithm is similar to one employed by the constraint-based
PC algorithm in terms of conditional independence tests performed. The PC algorithm starts
with a complete graph and prunes edges if a pair of variables are found to be independent given
a conditioning set. Unlike the PC algorithm, the RCD algorithm first estimates the potential
dependencies (PDs) from all perspectives in a canonical form using the relational schema and hop
threshold. The potential dependencies are then pruned using the conditional independence tests
and a set S containing separating sets for each pruned dependency is maintained. The skeleton
estimation phase gives a set of undirected dependencies from all perspectives (pruned PDs) and a
set of conditioning variables S.

3.2.2 Causal Orientation Determination
The causal direction of edges is determined using orientation rules on the abstract ground graphs
constructed with potential dependencies. The orientation rules reason about d-separation and condi-
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Figure 3.5: Edge orientation rules used in RCD algorithm

tional independence tests. First, all the colliders are determined and then orientation propagation
rules are used iteratively until no edges can be oriented further. The orientation rules used by
the RCD algorithm are described below. Let B be the prespective of AGG and IW an entity or
relationship with attribute W . So, [B...IW ].W is a relational variable in the AGG.

Collider Detection The unshielded colliders can be detected using the d-separation property of
colliders described in section 2.3.2. For simplicity let us consider a skeleton graph of three random
variables Vi−Vj −Vk. The edges can be oriented as Vi →Vj ←Vk if Vi and Vk are independent when
Vj is not in a conditioning set but dependent when Vj is included in the conditioning set. This can
be extended to the relational variables of an AGG as depicted in Figure 3.5(a).

Bivariate Edge Orientation Bivariate edge orientation, a novel contribution by Maier et al.
(2013a), is realized by autocorrelation between the entities involved in ONE-MANY or MANY-
MANY relationship. Figure 3.4 shows the relational bivariate dependency where two relational
variables of the same entity interact with another entity with different path lengths. Intuitively,
Figure 3.4 (a) shows the dependency between co-actors’ popularity and the movie’s success. Let,
[IX ].X − [IX ...IY ].Y − [IX ...IY ...IX ].X be the skeleton graph. The edges are oriented as a collider
if [IX ...IY ].Y is not in the separating set of [IX ].X and [IX ...IY ...IX ].X . Otherwise, the edges are
oriented such that [IX ...IY ].Y is the common cause.

Known Non-collider Edge Orientation This rule is applied after the collider detection rules
and works on the assumption that the orientation should not produce any new colliders. Again, for
simplicity let us consider a skeleton graph of three random variables Vi →Vj −Vk. The undirected
edge should be oriented as Vi→Vj →Vk to avoid a new collider. The extension to relational variables
is depicted in Figure 3.5(b).

Cycle Avoidance This rule orients the edges such that directed cycles are avoided. Let, Vi →

Vj → Vk be the directed edges and Vi −Vk be the undirected edge. The edge must be oriented as
Vi →Vk to avoid the cycle. Figure 3.5(c) shows the extension of this rule to relational variables.

Meek Rule 3 This rule was introduced by Meek (1995) and is referred to as Meek Rule 3 by
the authors. It reasons about the orientation of edge Vx −Vz in presence of two partially oriented
structures Vx −Vw → Vz and Vx −Vy → Vz. In order to avoid a new collider and directed cycle, the
edge must be oriented as Vx →Vz. Figure 3.5(d) shows the extension for relational data.
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3.3 Critique
In this section, I summarize the work by Maier et al. (2013a) in a broader context of causal structure
learning and discuss the contributions and limitations of the approach.

3.3.1 Causal Structure Learning Approach
The Table 3.1 below provides the synopsis of the approach for causal structure learning from
relational data.

Table 3.1: Synopsis of RCD algorithm in the context of causal structure learning

Concept Description
Input Relational Schema and Data
Representation Type ËGraphical Models éSEM
Representation Relational Model and Abstract Ground Graphs
Algorithm Type ËConstraint-based éScore-based éHybrid
Causal Assumption ËFaithfulness ËSufficiency
Contribution by non-IIDness Relational Bivariate Orientation

Output
Equivalence classes of AGG for each perspec-
tive

3.3.2 Contributions and Limitations
Maier et al. (2013a) provided a significant contribution in the area of relational causal discovery.
RCD algorithm not only provided an approach to handle relational data for causal structure learning
but also came with the theoretical guarantee of soundness and completeness making it equivalent to
the PC algorithm for IID data. Moreover, the RCD algorithm was able to leverage the autocorrelation
found between the entities involving in ONE-MANY or MANY-MANY relationship. This enabled
a novel bivariate orientation rule for determining the direction of edges. The experimental results
with the synthetic data showed this rule had a significant role in orienting the edges for relational
data with multiple entities. The results also showed RCD performed better than the algorithms
that used a modification of the PC algorithm for relational data. For the case with only one entity,
the performance of the PC and RCD algorithm was similar. This justified the need for richer
representations for relational data. Moreover, the RCD algorithm was applied to real-world data
from the movie industry to discover interesting causal insights.

The RCD algorithm has some limitations due to assumptions made and the practicality of
implementation. The algorithm takes account of relationships only with certain path length. Since
casual structure learning is unsupervised, the knowledge of the hop limit may not be known apriori.
Moreover, the RCD algorithm assumes the there are no latent confounders present in the data.
However, this is a strong assumption and can be violated. The RCD algorithm uses a linear
method for testing conditional independencies which may produce incorrect results for complex
data distributions. The RCD algorithm takes relational schema as input to discover the naturally
occurring causal mechanisms. However, the design of schema may be different across different
domains for the same underlying mechanisms. This algorithm does not consider temporal data
where there can be feedback creating cycles. Moreover, data measurement errors, selection bias,
and missing data challenge the faithfulness assumption which is still an open problem for all causal
discovery approaches.
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4. Causal Structure Learning from Nonstation-
ary/Heterogeneous Data

The availability of big data has created new challenges for causal discovery. Traditionally causal
discovery algorithms were applied to a relatively small dataset with an identical distribution of
random variables. However, the large dataset available in present days is integrated from multiple
sources. Similarly, the data is retained over a comparatively longer period with fine granularity.
Thus, it is more common to encounter heterogeneous and nonstationary data with underlying
distribution changing across data sources and time. The heterogeneous and nonstationary data
violate the IID assumption of Bayesian networks and most of the algorithms built on top of it.
Moreover, the causal mechanism learned by a model is assumed to remain constant over time. In
this chapter, I summarize the approach by Zhang et al. (2017) for representing and learning causal
structure from heterogeneous and nonstationary data.

4.1 Representation

4.1.1 Misleading Conclusion with Traditional Approach

Figure 4.1: An illustration of misleading conclusion with traditional approach. (a) True causal
model with confounding effect of non-stationary/heterogeneous data (b) The estimated skeleton

graph in asymptotic case

Causal Bayesian networks are preferable models for representing the causal mechanisms as
they encode the joint probability and conditional independencies of the data. However, Bayesian
networks are assumed to have identically distributed random variables and a fixed probability
distribution. These assumptions are violated for nonstationary and heterogeneous data. The
distribution shift across time and domains may change the conditional independence found in the
data and hence the causal models. The variation in the causal model may be due to change in
the underlying data generating process, change in causal strengths, or level of disturbances. If
a DAG G(V,E) represents the underlying causal model for each time point or domain, the joint
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probability distribution factorizes to P(V) =∏i P(Vi ∣ pa(Vi)). For nonstationary or heterogeneous
data at least some P(Vi ∣ pa(Vi)) are changed with time and domain. These modules are called
changing causal modules. Zhang et al. (2017) assume the quantities that change over time or
domain can be represented as a function of time or domain index represented as C. The values of
index C are available from the nonstationary dataset. Thus, the function g(C) can be considered
as a confounder affecting one or more modules simultaneously and responsible for non-identical
distribution. Figure 4.1(a) depicts such assumption where true causal model is a chain from V1 to
V4. The nodes V2 and V4 are simultaneously being affected by some unknown function of time or
domain index. The Figure 4.1(b) shows skeleton graph where the confounding effect is responsible
for false identification of V1−V4 and V2−V4 as adjacent nodes. Some workarounds proposed for
handling such issues include using a sliding window of time or handling data of each domain
separately. However, such approaches suffer due to the scarcity of samples and a high number of
conditional independence tests. Zhang et al. (2017) formulate the problem to detect the changing
causal modules all at once using complete data.

4.1.2 Assumptions
The representation of causal models for nonstationary and heterogeneous data should be developed
such that the underlying causal model is allowed to change with time or domain. Zhang et al.
(2017) allow unmeasured confounders in the model by dropping the causal sufficiency assumption.
However, it is assumed that each confounder can be written as a smooth function of time or domain
index. This assumption implies the confounders are fixed are a given time or domain. Such an
assumption is termed as pseudo causal sufficiency assumption. Moreover, Zhang et al. (2017)
assume the data is independent but not identically distributed. This means only instantaneous or
contemporaneous causal relations are considered. Similar to other constraint-based algorithms, the
data distribution is assumed to be faithful to the underlying causal model.

4.1.3 SEM for Non-identical Distribution
Let g = {gl(C)}L

l=1 be a set of confounders represented as smooth function of domain index or time.
Then, each random variable Vi is represented by the following structural equation model:

Vi = fi(pa(Vi),gi(C),θi(C),εi) (4.1)

, where gi(C) ⊆ g are the confounders affecting Vi, θi(C) is time or domain dependent function only
affecting Vi, and εi is the disturbance term independent of C. This equation can be converted to
equivalent DAG by assuming C as a random variable and the joint probability distribution to be
over V∪g∪ {θm(C)}n

m=1. The graph formed after representing the SEM in equation 4.1 as a DAG is
referred as augmented graph Gaug.

4.2 Methodology
The equation 4.1 and equivalently Gaug provide representation to capture the data with non-identical
distribution. However, the joint probability distribution consists of hidden variables that cannot be
measured. Thus, the time or domain index C is used as a surrogate variable for all the unobserved
variables. This enables the application of conditional independence tests to V∪ {C} for recovering
changing causal modules and skeleton graph. Moreover, the nonstationarity helps to provide
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additional information regarding causal orientations. The skeleton estimation and edge orientation
procedure of Constraint-based Causal Discovery from Nonstationary/heterogeneous Data (CD-
NOD) (Zhang et al., 2017) algorithm is presented below.

4.2.1 Skeleton Estimation
The skeleton estimation phase uses conditional independence tests to reason about the adjacency of
random variables. For the CD-NOD algorithm, skeleton estimation starts with a complete graph and
prunes edges in two steps:(i) Detection of changing modules and (ii) Recovery of causal adjacency.

Detection of changing modules: In this step, the marginal and conditional independence
between surrogate variable C and each random variable Vi is tested. If the variables are found to
be independent given any conditioning set S, the edge between the variables is removed. All the
variables adjacent to node C after this procedure are the changing modules that are affected by some
unobserved factors across time or domain.

Recovery of adjacency: The edge between two variables Vi and Vj is removed if equation 4.2
holds.

Vi ⫫Vj ∣ Sk∪C (4.2)

, where Sk ⊆ {V\{Vi,Vj}}. The asymptotic correctness of the rule above follows from the assumption
of distribution faithful to DAG and the assumption that all the unobserved variables g∪ {θm(C)}n

m=1
are a deterministic function of the index C. Since the deterministic function of index C may to be
a complex non-linear function Zhang et al. (2017) recommend kernel-based non-parametric tests
(Zhang et al., 2011) for the correctness of conditional independence test.

4.2.2 Causal Orientation Determination
In addition to the Collider Detection(CD), Known Non-Collider (KNC) and Cycle Avoidance (CA)
rules used in SGS algorithm (Spirtes et al., 2000), Zhang et al. (2017) propose additional orientation
rules for determining the causal direction. These additional rules are realized due to the changing
causal modules for nonstationary or heterogeneous data.

Case I: Unshielded Triples The first case considers unshielded triples including the domain
or time index variable. Let C−Vk −Vl such a triple. Since the changing modules are function of the
index, we can assign C→Vk. Now, the conditional independence test C ⫫Vl ∣ S gives the orientation
of Vk −Vl . If Vk ∈ S then the triples must be a chain C →Vk →Vl . Otherwise, the triples will be a
collider C→Vk ←Vl .

Case II: Shielded Triples The second case of orienting a shielded triple C−Vk −Vl and C−Vl
is a bit complicated. The edges can be paritally oriented as C→Vk−Vl and C→Vl . However, Vk−Vl
can be either confounded by g or {θk(C),θl(C)} can independently affect Vk and Vl respectively.
Zhang et al. (2017) propose an approach based on principle of independent changes that states
P(cause) and P(e f f ect∣cause) are independent given cause and effect change independently and
confounder(function of C) is not present. Let Vk = V1 and Vl = V2 and without loss of generality
V1 → V2 be the true causal direction. Figure 4.2 (a) depicts the case of independent changes and
(b) shows the case where a confounder is present. Zhang et al. (2017) show the case for Figure
4.2(a) can be solved using the property that independent changes θi(C) are independent only in
causal direction. This can be estimated from data by calculating Kullback-Leibler divergence score
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Figure 4.2: Two possible situations when V 1→V 2 and both V 1 and V 2 are found to be changing
modules (adjacent to C)(a) Independent changing parameters (b) A confounder in addition to

changing parameters

(∆, given by equation 4.3) for both causal orientations and choosing the orientation that provides
minimum score.

∆V2→V1 =< log
P̄(V1 ∣ V2)

< P̂(V1 ∣ V2) >
> (4.3)

, where <.> denotes sample average, P̄(V1 ∣ V2) is calculated from whole data, and < P̂(V1 ∣ V2) > is
estimated for each domain or time window.

For the case with confounder as shown in Figure 4.2(b), Zhang et al. (2017) conjecture the
approach still work assuming the influence of the confounder g1(C) is not very strong. Zhang et al.
(2017) reason the ∆ captures influence of confounder for true causal direction whereas the wrong
causal direction has additional disturbances along with confounder influence.

4.3 Critique

4.3.1 Causal Structure Learning Approach
CD-NOD algorithm (Zhang et al., 2017) determines skeleton and edges orientation for non-identical
distribution changing with domain or time. The SEM representation is extended to include
time/domain dependent unobserved influences as well as confounders that affect random vari-
ables. The CD-NOD approach uses both causal graphical model and structural equation model for
the representation of causal assumptions and non-identical data generating process. The algorithm
assumes faithfulness of the distribution but relaxes the causal sufficiency assumption such that there
can be hidden common causes as a function of time or domain index. This modification is termed
as pseudo causal sufficiency assumption. CD-NOD adds an orientation determination approach
similar to the functional causal model in addition to regular constraint-based rules. The table 4.1
summarizes the causal structure learning approach.

4.3.2 Contributions and Limitations
The main contributions of Zhang et al. (2017) were to develop a causal representation that allowed
random variables with non-identical distribution, estimate the changing modules along with a
skeleton graph, and orient the edges using the heterogeneity or nonstationarity properties of data
(Section 4.2.2). The experimental results on the simulated dataset showed that in comparison
to the traditional SGS algorithm, the CD-NOD (enhanced) algorithm reduced the false positives
significantly. This result follows from the example shown in Figure 4.1 where traditional algorithms
are affected by time or domain confounding. Moreover, the experiments on real word brain imaging
and breast tumor dataset showed the algorithm’s applicability in the real-world for reduced false
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Table 4.1: Synopsis of CD-NOD algorithm in the context of causal structure learning

Concept Description

Input
Nonstationary/Heterogeneous Data with
time/domain index

Representation Type ËGraphical Models ËSEM

Representation
Functional Causal Model and Augmented
Graphs (With time/domain index)

Algorithm Type ËConstraint-based éScore-based éHybrid
Causal Assumption ËFaithfulness ËSufficiency (Pseudo)

Contribution by non-IIDness
Changing modules detection and Kullback-
Leibler divergence score based edges orienta-
tion

Output
Equivalence classes DAG with variables and
domain/time index

positives. The integration of the principle of independent changes allowed edge orientation with the
KL divergence score and added a new perspective to the constraint-based algorithm. Also, Zhang
et al. (2017) explicitly specified the type of conditional independence tests to be performed for better
results. Although the conditional independence test is the backbone for most of the constraint-based
algorithms, the details are typically left obscure.

The experimental results of the CD-NOD algorithm were compared to the SGS algorithm
which is a weak baseline. The PC algorithm and its order-independent variant (Colombo and
Maathuis, 2014) with asymptotic completeness guarantee would be a much stronger baseline.
Moreover, both PC and SGS algorithms have assumptions of causal sufficiency which is violated
by the confounding effect of time or domain index. FCI, the constraint-based algorithm capable
of recognizing confounders could be used as a baseline to see out of the box performance. The
determination of causal orientation for the case of Figure 4.2(b) was not justified theoretically and
empirically. The assumptions of independent data, confounders only being a deterministic function
of time or domain index could be challenged. The authors highlighted further improvements such
as theoretical justification for the case of Figure 4.2(b), handling case when causal direction reverse,
temporal feedbacks and so on.
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5. Causal Structure Learning from Time series
Data

Time series data is one of the most prominent non-IID data occurring in the real world. Time
series data presents different challenges in learning causal structures from data. Most of the causal
structure learning approaches are based on directed acyclic graphs and assume there is no temporal
feedback. Temporal feedback occurs when a random variable’s value is dependent on its past values.
Such models are also known as vector autoregressive models (VARs) and extensively studied in
econometrics. Both RCD (Maier et al., 2013a) and CD-NOD (Zhang et al., 2017) algorithms
discussed in the previous chapters explicitly assume the causal relationships are instantaneous
or contemporaneous and there is no temporal feedback. In this chapter, I summarize the work
on causal structure learning from multivariate time series data in the settings with unmeasured
confounding (Malinsky and Spirtes, 2018). Malinsky and Spirtes (2018) propose constraint-
based and hybrid algorithms to handle multivariate time series by relaxing the causal sufficiency
assumption. Moreover, Malinsky and Spirtes (2018) allow contemporaneous causal relations
in time series data. There is a philosophical debate regarding contemporaneous effect in time
series data (Malinsky and Spirtes, 2018; Granger, 1988). The Granger’s causality and so-called
VARs models assume there is no true contemporaneous causal effect. The causal effects believed
to be propagated from one variable in subsequent time step and the observed contemporaneous
relations are accounted for by the unmeasured confounding. The Structural Vector Autoregressive
(SVAR) model used by (Malinsky and Spirtes, 2018), on the other hand, allow contemporaneous
causal relationships. These contemporaneous causal relationships are possible when the true causal
frequency is undersampled or aggregated over a period during the measurement. In the following
section, I discuss the representation of the SVAR model with contemporaneous causal relationships
using so-called dynamic DAG as well as the representation of unmeasured confounders in time
series data.

5.1 Representation

5.1.1 SVAR and Dynamic DAGs
Structural Vector Autoregressive (SVAR) models are typically used in time series analysis to repre-
sent the a variable’s lag dependencies (with past values) as well as contemporaneous dependencies
(with present values). A k-dimensional order-p SVAR process can be written as equation 5.1
(Malinsky and Spirtes, 2018).

Xi,t = fi(X−i
t ,Xt−1, ..,Xt−p,εi,t) (5.1)
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Figure 5.1: Dynamic DAGs with latent confounder interactions (a) L1 is called an "auto-lag"
confounder and L2 may be called "contemporaneous confounder" (b) L3 may be called "cross-lag

confounder"

, where Xi,t denotes a random variable Xi ∈ {X1,X2...,Xk} at time t, X−i
t = Xt \Xi,t signifies contem-

poraneous effects, Xt−p the lag variables of past p time step, and εi,t is independent noise. The
SVAR process is a special SEM. Thus, using the equivalence of SEM and Bayesian network, we
can construct a joint probability distribution and corresponding DAG, known as dynamic DAG. The
joint distribution is given by equation 5.2.

P(Xt, ..,Xt−p) = ∏
i∈{1,...,k},s∈{t,...,t−p}

P(Xi,s∣pa(Xi,s) (5.2)

As seen from equation 5.1, self-feedback is not allowed on a random variable although contem-
poraneous effects are allowed.Malinsky and Spirtes (2018) also assume there is no selection bias
and the data generating process is stationary with time. These assumptions allow the representation
of causal structure in time series data with a Bayesian network known as a dynamic DAG.

5.1.2 Dynamic DAGs with Latent Variables
The equations 5.1 and 5.2 can be modified to include the unmeasured variables as well. Figure 5.1
depicts two dynamic DAGs showing the latent confounders and their types. Although the time series
is (semi-)infinite, only a finite segment of the graph can be represented since the causal relations
are repeating. The variables at t − p have exact incoming edges as time t although it is not shown
explicitly in the graph. There can be different types of confounders.

• contemporaneous confounder: Common causes of variables in the same time step.
• cross-lag confounder: Common causes of different variables across different time steps.
• auto-lag confounder: Common causes of a variable and its own past lags.

The latent confounders can not be measured from the data. Hence, we need a representation
that marginalizes over the unobserved variables and at the same time maintain causal information.
Maximal Ancestral Graph (MAG) is used to represent the marginalized distribution. MAG allows
directed edges (→) as well as bidirected (↔) edges. A → B denote A is an ancestor of B. A
bidirectional edge means both nodes are not the ancestors of one another and the dependency is due
to a confounder. The conditional independencies entailed by an underlying DAG are preserved by



CHAPTER 5. CAUSAL STRUCTURE LEARNING FROM TIME SERIES DATA 23

Figure 5.2: Dynamic MAGs for Marginalized dynamic DAG in Figure 5.1 (a) and (b)

MAG and m-separation, equivalent to d-separation, can be used to reason about independence. Two
variables Vi and Vj are adjacent if the nodes are not d-separated in the underlying graph condition
on the observed variables. The equivalence classes of a MAG graph is represented by so-called
Partial Ancestral Graph (PAG) with a possibility of an edge with a circle in either one or both ends.
Ao→ B indicates A has an arrowhead at some MAG in equivalence class whereas a tail in others.
Figure 5.2 depicts the marginalized dynamic DAG as a dynamic MAG.

5.2 Methodology
Malinsky and Spirtes (2018) modify the constraint-based FCI (Spirtes et al., 2000) and hybrid GFCI
(Ogarrio et al., 2016) to develop SVAR-FCI and SVAR-GFCI respectively for handling multivariate
time series data. These modified algorithms use temporal ordering and repeating structures in
underlying DAG to estimate the skeleton as well as orient the edges in addition to prior approaches.
The temporal ordering ensures the causal direction can never be toward past direction. The repeating
structures are defined as homologous pairs.

A pair of vertices (Xi,s,X j,t) is called a homologous pair with (Xm,a,Xn,b) if i = m, j = n and
s− t = a−b. Let, hom(Xi,s,X j,t) denote all the homologous pairs to (Xi,s,X j,t).

In figure 5.2 (a) (Xk,t−2,X j,t−2) are homologous with (Xk,t−1,X j,t−1) and (Xk,t ,X j,t). Similarly,
(Xk,t−2,X j,t−1) is homologous pair to (Xk,t−1,X j,t). The adjacency and causal orientations in homolo-
gous pairs are the same. The followings sections outline the contribution by timeseries data and its
representation for skeleton estimation and causal edge orientation.

5.2.1 Skeleton Estimation
The skeleton estimation starts with a complete PAG. The adjacency of edges are checked by
following the similar procedure as PC and RCD algorithm. If a pair of nodes (Xi,s,X j,t) are d-
separated by some conditioning set, then the edge between Xi,s and X j,t as well as all the edges
between its homologous pairs hom(Xi,s,X j,t) are removed.
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5.2.2 Causal Orientation Determination
The causal edge is oriented to adjacent vertices from Xi,s to X j,t if s < t using the property of temporal
order. After orientation obtained after the application of generic constraint based rules such as
Collider Detection (CD), Known Non-collider (KNC), and Cycle Avoidance (CD) is copied to all
the homologous pairs.

5.3 Critique

5.3.1 Causal Structure Learning Approach
Malinsky and Spirtes (2018) develop representation of time series data with contemporaneous
causal effect using SVAR models. The equivalent dynamic DAG model allowed presence of latent
confounders. Since Malinsky and Spirtes (2018) implement two algorithms for causal structure
learning from time series data, the synopsis table 5.1 below includes the features of both algorithms.
The main assumptions made by both algorithms are causal faithfulness, stationary distribution with
time, and no selection bias.

Table 5.1: Synopsis of SVAR-FCI and SVAR-GFCI algorithms in the context of causal structure
learning

Concept Description

Input
Multivariate time series data (Stationary with no
self-contemporaneous feedback)

Representation Type ËGraphical Models ËSEM

Representation
SVAR model and Maximal Ancestral Graphs
(MAG)

Algorithm Type
ËConstraint-based(SVAR-FCI) éScore-based
ËHybrid(SVAR-GFCI)

Causal Assumption ËFaithfulness éSufficiency

Contribution by non-IIDness
Temporal ordering for edge orientation, repeat-
ing homologous structures for skeleton estima-
tion and edges orientation

Output
Equivalence classes of MAG called Partial An-
cestral Graph (PAG)

5.3.2 Contributions and Limitations
The novel contribution by Malinsky and Spirtes (2018) is that the authors worked on contemporane-
ous causal effects in time series with latent variables settings for the first time. Malinsky and Spirtes
(2018) developed an SVAR based dynamic DAG representation to encode the temporal ordering,
causal dependency, and conditional independence relations. The representation allowed additional
insights for skeleton estimation and edges orientation determination. The authors provided prelimi-
nary results that showed high precision but low recall for skeleton estimation and edges orientation
in simulation experiments with a low sample size. Also, the experimental setup was limited to linear
models with Gaussian noise. The assumption of stationary data allowed skeleton estimation and
edge orientation using homologous pairs property. However, such an assumption may be a strong
one in many domains. Although the model assumed contemporaneous causal effects, it ignored
self-feedback. The authors pointed out it could be one of the future work.
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6. Discussion and Further Research Direction

6.1 Discussion
Chapter 3 to 5 presented approaches of learning causal structure from relational, nonstation-
ary/heterogeneous and time series dataset respectively. These data types are the most prominent
non-IID data sources with either coupled dependencies between observations, or non-identical
distribution of features or both. The common themes observed from the analysis of all three
approaches are as follows.

1. Traditional algorithms fail or produce misleading results when directly applied to non-IID
data.

2. More expressive representation is needed to capture the underlying mechanism in non-IID
data.

3. Non-IID nature of data and its representation provides additional knowledge about causal
dependency and orientation.

The theoretical guarantees and correctness in the causal structure learning literature come with many
assumptions about the underlying data-generating mechanisms. The IID samples assumption made
by Bayesian networks, the underlying representation, is the most challenging one. The application
of approaches with IID assumption for non-IID data produce false skeleton or orientation that
propagates over time in the most constraint-based algorithms. Maier et al. (2013a) and Zhang et al.
(2017) showed traditional PC and SGS algorithms produced misleading results. Malinsky and
Spirtes (2018), on the other hand, built on top of existing work on causal discovery from time series
data to relax the causal sufficiency and no contemporaneous causal effects assumptions.

The representations in causal structure learning have to capture the underlying data generating
mechanism as well as the conditional independencies found in data. Maier et al. (2013a) designed a
relational model and abstract ground graph representation to capture the interactions in relational
data. Zhang et al. (2017) allowed non-stationary/heterogeneous data generating processes with the
modification of SEM and equivalent DAGs with a surrogate variable. Malinsky and Spirtes (2018)
introduced graphical representation termed as dynamic MAG for so-called SVAR processes that
handled unmeasured confounders.

Maier et al. (2013a) leveraged the auto-correlation between an entity attribute with itself through
different relationship paths to develop relational bivariate edge orientation rule. Zhang et al. (2017)
used heterogeneity and non-stationarity to allow modules changing with time/domain and detect
these changing modules. Malinsky and Spirtes (2018) utilized the temporal ordering and repeating
structures in time series data. The table 6.1 summarizes the main concepts in all three papers.
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Table 6.1: Comparison of main concepts in Maier et al. (2013a), Zhang et al. (2017), and Malinsky
and Spirtes (2018)

Concept Maier et al. (2013a) Zhang et al. (2017) Malinsky and Spirtes
(2018)

Data for
causal
structure
learning

Relational
Nonstationary/ hetero-
geneous

Multivariate time series

Causal Dis-
covery Ap-
proach

Constraint-based
Constraint-based (and
hint of Functional causal
model)

Constraint-based and
Hybrid

Algorithms RCD CD-NOD
SVAR-FCI and SVAR-
GFCI

Non-
IIDness
in data

Both not independent
or non-identical but with
out temporal or self
feedback

Only non-identical distri-
bution but independent

Not Independent but
stationary with no
contemporaneous
self-feedback

Causal
Represen-
tation

Relational Model
and Abstract Ground
Graphs (AGG)

SEM and Augmented
Bayesian Network

SEM and Dynamic Max-
imal Ancestral Graphs
(MAGs)

Causal As-
sumptions

Faithfulness and Causal
Sufficiency

Faithfulness and
Pseudo Causal Suffi-
ciency

Faithfulness

Other As-
sumptions

No temporal feedback,
Only contemporaneous
causal relations

Independent distri-
bution, Confounders
smooth function of
time or domain index,
only contemporaneous
causal relations

stationary distribution,
no selection bias

Domain
Knowl-
edge or
Parameter
tuning

Relational Schema and
hop-limit

Time / domain index Time-order p

Conditional
indepen-
dence test
used

Linear
Kernel-based non-
parametric

Linear with Gaussain
noise

Contribution
by non-
IIDness

Relational Bivariate Ori-
entation

Changing modules
detection and and
Kullback-Leibler diver-
gence score based
edges orientation

Temporal ordering and
repeating homologous
structures

Output
Equivalence classes of
AGG from each per-
spective

Equivalence classes
of DAG with changing
modules adjacent to
time/domain index

Equivalence classes
of MAGs (called PAG)
showing marginalized
causal dependencies
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6.2 Further Research Direction
Although the sources reviewed (on Table 6.1) try to solve some aspects of non-IIDness of data
separately, there is no generic representation (like Bayesian network for IID data) to capture all
the non-IID nature of data. Real-world data is mostly relational, non-stationary and temporal
at the same time. A long term research direction is to come up with relational models for non-
stationary/heterogeneous time series data. This would make all other cases of non-IID data discussed
above special cases.

Most of the causal structure learning algorithms come with explicit assumptions for correctness.
The real-world complexities like unmeasured confounders, missing data, selection bias, etc make
it difficult to fulfill all the assumptions. So, a research direction is making these models robust to
these real-world data complexities.

Causal structure learning algorithms reason about conditional independencies in the data to
come up with causal relationships. However, these models (mostly constraint-based) return only
the equivalence classes. Thus, causal structure learning naturally fits with an interactive or active
learning paradigm where domain knowledge and experimental results can be incorporated.

A challenge for causal discovery methods is the evaluation of the performances. Due to the
lack of ground truth, most of the models are evaluated using synthetic data. However, the use of
synthetic data is non-standard and it can possibly be influenced by the assumptions of the authors
(Gentzel et al., 2019). A research direction can be to design a more robust evaluation framework
of causal structure learning algorithms. The availability of empirical benchmark data in non-IID
settings will help enhance the state-of-the-art in the field.

Conditional independence tests are the backbone of most causal structure learning algorithms.
The mistakes in conditional independence tests are propagated to all other phases. However, most
of the conditional independence tests come with their own assumptions of data distribution and
parameters. Although the causal models are mostly non-parametric, the evaluation of most causal
models is performed with linear SEM model with Gaussian noise. Thus, a research direction is to
find methods for fast non-parametric conditional independence tests.

In conclusion, some theoretical foundations have been set up for representation of different
non-IID data separately. With some assumptions and restrictions, partial solutions have been
developed to reason about causal dependency in realtional, nonstationary/heterogeneous and time
series data. Although there are challanges to handle the non-IID nature of data, these models
actually utilize the underlying data structure in non-IID data to provide addition insights. There
are still open challanges which require non-trivial solutions in the field of causal structure learning.
Causal structure learning benefits most when the domain knowledge and experimental results are
utilized interactively.
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