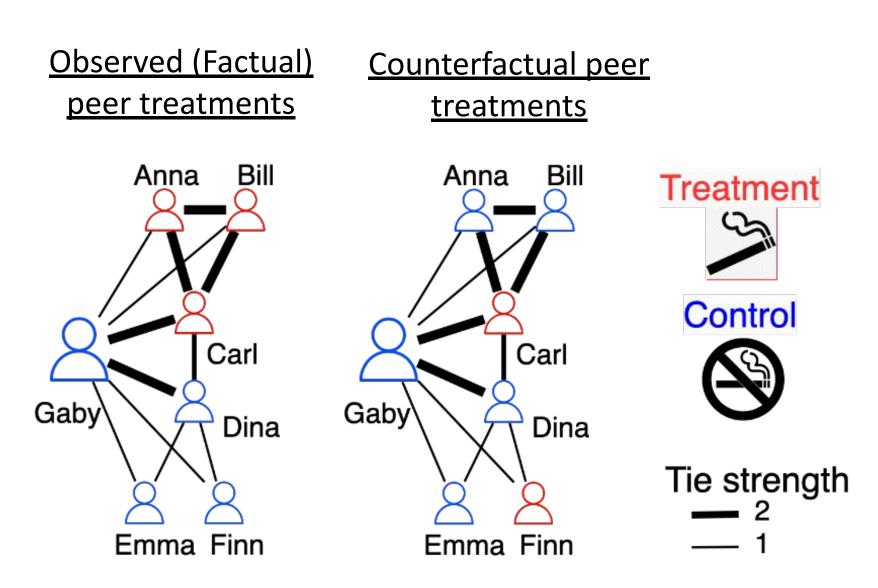
Exposure Mapping Function Learning for Peer Effect Estimation Shishir Adhikari (<u>sadhik9@uic.edu</u>), Sourav Medya (<u>medya@uic.edu</u>), Elena Zheleva (<u>ezheleva@uic.edu</u>)

Introduction

- *Peer effect*: difference in counterfactual outcomes of an individual for different levels of *peer exposure*
- *Peer exposure:* aggregated peer treatment, the extent to which an individual is exposed to the treatments or actions of peers
- **Exposure mapping function**: maps peer treatments and relevant contexts to peer exposure representation

Existing research assumes that the exposure mapping function is known a priori. In reality, it is often unknown and can be misspecified.



Variety of possible peer exposures for Gaby's ego network

Exposure mapping function	Peer exposure	
	Factual	Counterfactual
Binary (at least one peer treated)	1	1
Fraction of treated peers	3/6	2/6
Linear threshold (40%)	1	0
Weighted fraction (tie strengths)	4/8	3/8
Weighted fraction (attribute similarity: female)	1/3	0/3
Local structure: Clustering coefficient of treated peers	1	0
Local structure: Structural diversity of treated peers (connected components)	1	2

To learn the exposure mapping function to capture underlying peer influence mechanisms for robust peer effect estimation.

Causal Inference Problem Setup

- 0 **P**...

Evaluation:

peer treatments effect (PEHE)

Baselines: Handling influence mechanisms due to local neighborhood structures

- of treated peers

University of Illinois Chicago, Chicago, IL

Research Goal

• Attributed network $G=(V, \mathcal{E})$ with node attributes X, edge attributes **Z**, and N=|**V**| nodes • Treatment random variables $T = \langle T_1, ..., T_i, ..., T_N \rangle$ with assignments $\mathbf{\pi} = \langle \pi_1, ..., \pi_i, ..., \pi_N \rangle$ • Outcome $Y = \langle Y_1, ..., Y_i, ..., Y_N \rangle$

 Individual Peer effect (IPE) for node v, due to peer treatments $T_{N(i)} = \pi_{N(i)} vs T_{N(i)} = \pi'_{N(i)}$ on outcome Y conditioned on *effect modifiers* **C** $\delta_{i} = E[Y_{i}(T_{i}=\pi_{i}, P_{N(i)}=\phi_{e}(\pi_{N(i)}, G, Z))]C_{i}] E[Y_i(T_i=\pi, P_{N(i)}=\phi_e(\pi'_{N(i)}, G, Z)|C_i], where$ is a random variable for peer exposure $\circ \phi$ is an *exposure mapping function* \circ **C** = $\phi_{f}(G, X, Z)$ is a feature mapping function that captures confounders and effect modifiers

• Assuming *unconfoundedness, consistency,* and *positivity,* peer effects can be estimated as: $\delta_{i} = E[Y_{i} | T_{i} = \pi_{i}, P_{N(i)} = \varphi_{e}(\pi_{N(i)}, G, Z), C_{i}] E[Y_i | T_i = \pi_i, P_{N(i)} = \varphi_e(\pi'_{N(i)}, G, Z), C_i]$

Experimental Setup

Setting: Observed peer treatments versus flipped

Metric: Precision in the estimation of heterogeneous

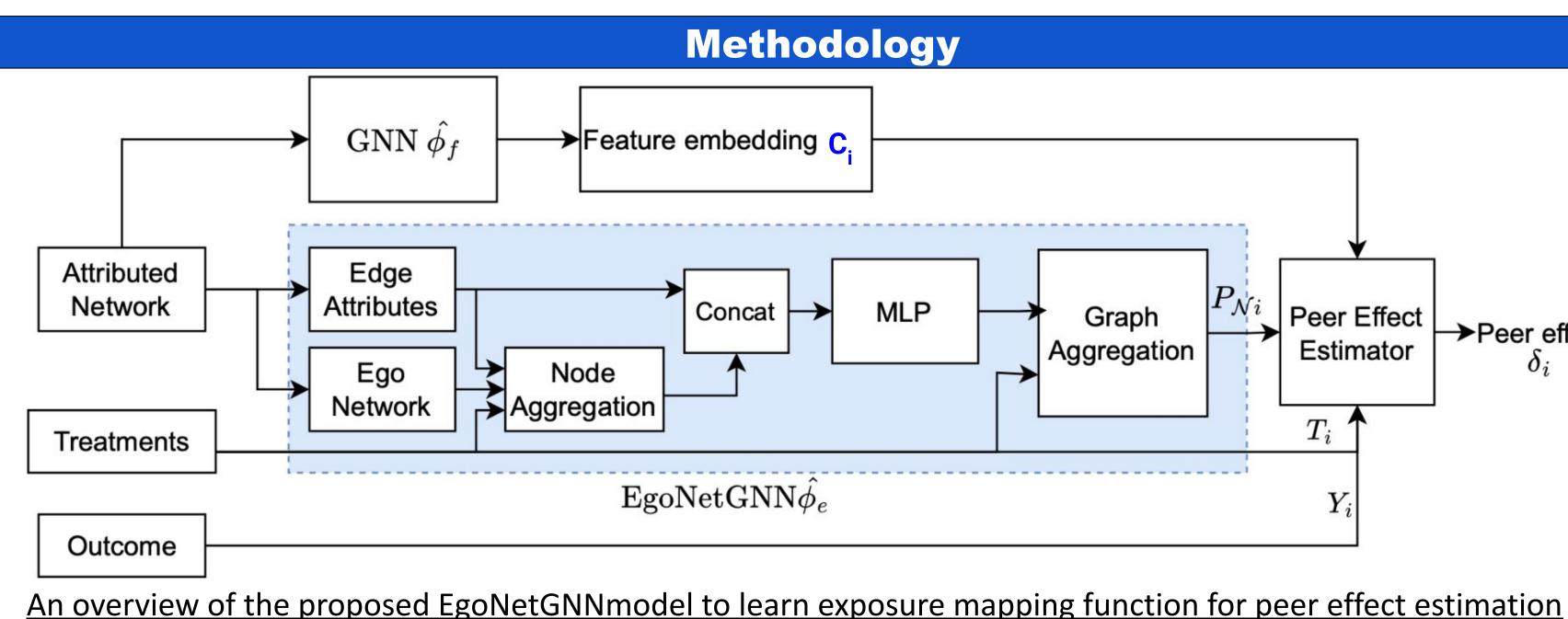
 $\mathbf{\epsilon}_{\mathsf{PEHE}} = \sqrt{\frac{1}{N} \sum_{i} (\delta_i - \hat{\delta}_i)^2}$

• **GNN_TARNet_MOTIFS** (Yuan et al., WWW'21) • **INE_TARNet** (Adhikari and Zheleva, Machine Learning Journal 2025) Potentially misspecified peer exposure mapping • **1GNN_HSIC** (Ma et al., AISTATS'21) • **DWR** (Zhao et al., TKDD'24)

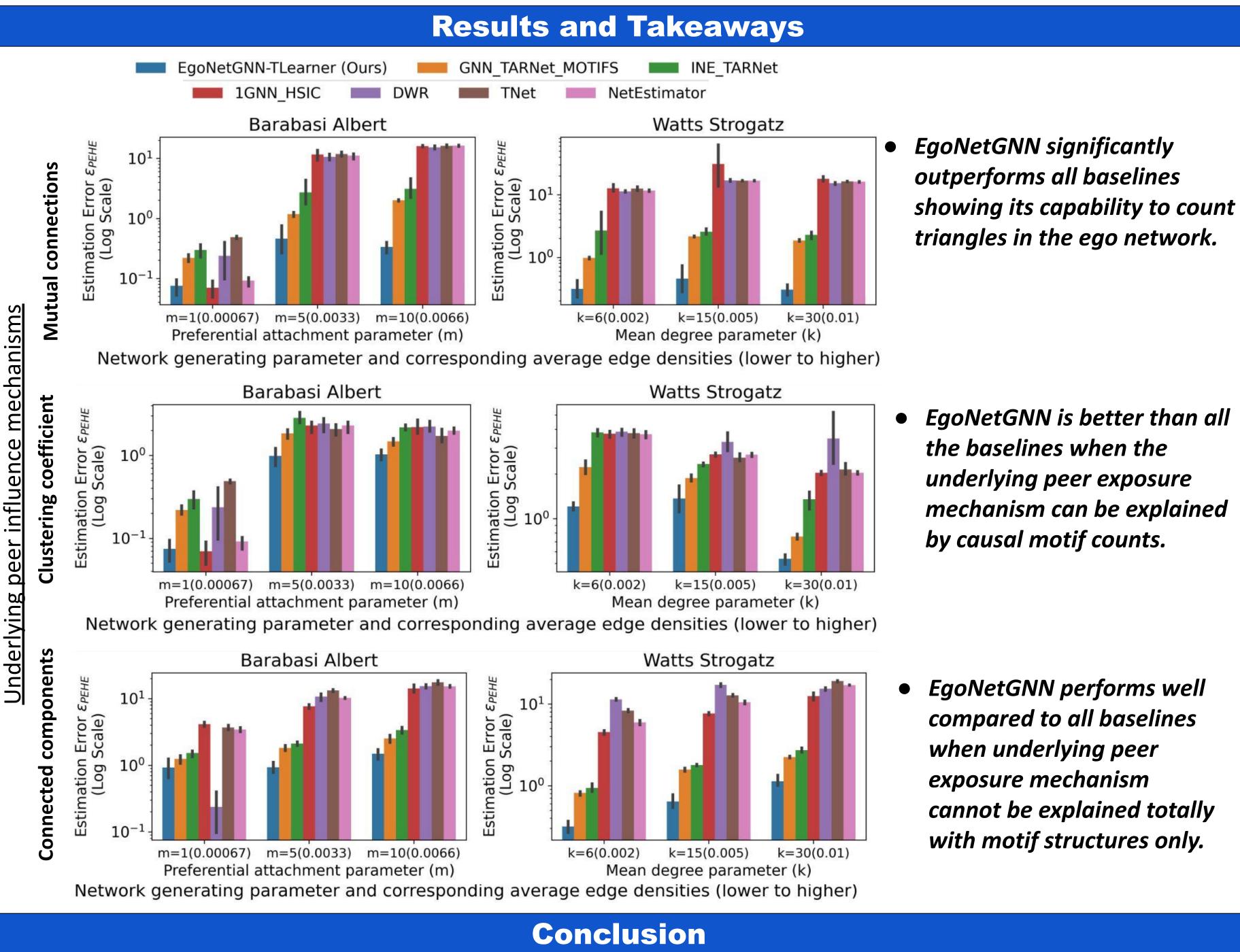
Homogeneous exposure mapping based on fraction

• **TNet** (Chen et al., ICML'24)

• *NetEstimator* (Jiang and Sun, CIKM'22)



• EgoNetGNN extracts ego networks, for each node, with peer treatments as node attributes and existing edge attributes. Node-level aggregation, encoder MLP, and graph-level aggregation capture relevant local neighborhood contexts. • Any peer effect estimator (e.g., Treatment Agnostic Representation Network (TARNet)) can be used to get peer effects.



EgoNetGNN improves the estimation of peer effects compared to state-of-the-art baselines by learning an exposure mapping function that captures unknown underlying peer influence mechanisms accounting for peer treatments, unknown edge weights and neighborhood structure.

COMPUTER SCIENCE

